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A population of identical nonlinear oscillators, subject to random forces and 
coupled via a mean-field interaction, is studied in the thermodynamic limit. The 
model presents a nonequilibrium phase transition from a stationary to a time- 
periodic probability density. Below the transition line, the population of 
oscillators is in a quiescent state with order parameter equal to zero. Above the 
transition line, there is a state of collective rhythmicity characterized by a time- 
periodic behavior of the order parameter and all moments of the probability dis- 
tribution. The information entropy of the ensemble is a constant both below 
and above the critical line. Analytical and numerical analyses of the model are 
provided. 

KEY WORDS: Nonequilibrium phase transitions; self-synchronization; non- 
linear Fokker-Planck equation; Hopf bifurcation. 

1. I N T R O D U C T I O N  

The appea rance  of  t empora l  o rder  in macroscop ic  systems out  of 
equi l ibr ium is a much  ana lyzed  p h e n o m e n o n  in physics  and  o ther  sciences. 
This  t empora l  o rde r ing  is often a coopera t ive  effect ar is ing in large collec- 
t ions of in terac t ing  non l inea r  subsys tems in contac t  with a the rmal  bath.  
A m o n g  processes of  t empora l  order ing,  the se l f -synchroniza t ion  of large 
popu la t ions  of  osci l la tors  is pa r t i cu la r ly  conspicuous .  (1 6) The pu rpose  of 
the present  p a p e r  is to i l lust ra te  this process  in a simple model ,  where 
deta i led ca lcula t ions  are  possible.  We  analyze  an  ensemble  of infinitely 
m a n y  ident ical  non l inear  osci l la tors  in terac t ing  via a l inear  mean-f ield te rm 
and subject  to thermal  noise. The  mode l  presents  a nonequ i l ib r ium phase  
t rans i t ion  f rom a s t a t iona ry  to a t ime-per iod ic  p robab i l i t y  density. Below 
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the transition line, the population of oscillators is in a quiescent state with 
order parameter equal to zero. Above the critical line, there is a state of 
collective rhythmicity characterized by a time-periodic behavior of the 
order parameter and all moments of the probability distribution. 

The search for an adequate statistical description of collective 
rhythmicity has been encouraged by the abundance of examples in biology, 
chemistry, etc. ~1 6) Early attempts by Yamaguchi et al. ~ and Kuramoto (2) 
emphasized the dynamical aspects of the problem: They considered a 
model of the type described above as basically a dynamical system pertur- 
bed by noise and by coupling among subsystems. Thus, these authors 
understated the statistical features of the models. A statistical treatment 
was provided by Desai and Zwanzig (3) for a model of interacting identical 
particles: 

dxj/dt--(1--x~)xj+ F ' / 2w j ( t ) - J I x j -N-~  ~ xk], j = l  ..... N 
l ~ k ~ N  

(1.1) 

Here the W/(t) are independent Gaussian white noises E(wj)=0,  
(wj(t) wk(t')) = 6jk 6( t - t ' )] .  With J =  0, Eq. (1.1) describes the relaxation 
of a particle in a double-well potential in contact with a thermal bath at 
temperature F. The last term in (1.1) can be viewed as an interaction 
between particles, which creates a tendency for their coordinates xj to relax 
toward the center of mas~ of the ensemble. Equation (1.1) was introduced 
by Kometani and Shimizu (4) to illustrate the formal treatment later used in 
Ref. 1. Desai and Zwanzig derived the following nonlinear Fokker-Planck 
equation (FPE) for the one-particle probability density: 

3, p(t; x) = �89 x) - 0x{ [(1 - x2)x + J((x(t) ) - x)] p(t; x)} (l.2a) 

(x( t ) )  = f xp(t; x) dx (1.2b) 

f p(t; x) dx = 1 (1.2c) 

They used the molecular chaos assumption [p2(t;xl ,x2)=p(t;Xl) 
p(t;x2)] to close a hierarchy of equations for all the multiparticle 
probability densities. Desai and Zwanzig also gave another derivation 
which made clear that (1.2) is asymptotically valid in the limit N ~  o0. ~3) 
Later, Dawson proved this. ~5) An analysis of (1.2) showed the existence of a 
pitchfork bifurcation for its stationary solutions, which corresponds to an 
equilibrium phase transition. Furthermore, the approach to equilibrium in 
the thermodynamic limit can be studied from (1.2). (3,5,6) 
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Nonlinear Fokker-Planck equations similar to (1,2) have been derived 
for more general mean-field modelsJ 7) For different models, Bonilla (7) 
found stable time-dependent solutions of these nonlinear FPE. An 
oscillatory probability density is a natural candidate for the state of collec- 
tive rhythmicity that characterizes oscillator self-synchronization. To study 
self-synchronization of nonlinear oscillators, we need subsystems with more 
than one degree of freedom. One of the simplest such models is the 
following: 

l<~k<.N 

xs=_(xj, yj), XT-(-ys ,  xj), x j . x ] = 0  (1.3b) 

Here j =  1 ..... N. For J = F = 0 ,  the stable solution of (1.3a) is x~=0 i f ~ < 0  
and x s = ~'/2[cos(t + 3s), sin(t + flj)] if ~ > 0 {fls = tan[yj(O)/x/(O)] }" Thus, 
for ~>0,  (1.3) is a collection of nonlinear oscillators subject to thermal 
noise fluctuations and coupled via a mean-field interaction. In the limit 
N--+ oo, the one-oscillator probability density p(t, x) corresponding to (1.3) 
exhibits first- and second-order nonequilibrium phase transitions. Below 
the line corresponding to second-order phase transitions, the only stable 
density is stationary, with order parameter ( x ) = 0 .  This represents a 
quiescent state, with the oscillators moving out of phase. Above the 
transition line, the stable probability density is time-periodic, thereby 
representing a state of collective rhythmicity: the oscillators move in phase. 
Near the line corresponding to first-order phase transitions, stable 
stationary and oscillatory densities coexist, and hysteresis loops are 
therefore possible. Furthermore, the information entropy, defined as 
-Sp(t,  x)ln p(t, x)dx, is time-independent for the stable time-periodic 
density. Some of these results were announced in Ref. 7. We derive them in 
Section2, together with several new results. They are numerically 
illustrated in Section 3. Section 4 consists of a summary of our findings. 
The Appendix is devoted to the derivation of several technical results 
needed in the text. 

2. A N A L Y S I S  OF T H E  M O D E L  

Asymptotically as N--+ ~ ,  the one-oscillator probability density 
p(t, x) corresponding to (1.3) obeys the following nonlinear Fokker- 
Planck equation(7): 

0,p(t; x) = �89 x) - V .  { [(c~ - x2)x + x* + J ( ( x ( t ) )  - x)] p(t; x)} 

(2.1a) 
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( x ( t ) )  = f xp(t; x) dx (2.1b) 

f p(t, x) dx = 1 (2.1c) 

p(0, x) =/~(x) (2.1d) 

We have supposed a molecular chaos initial condition for the N-oscillator 
probability density(7): 

N 
PN(O'~ Xl ' " "  XN) : H ]~(X]) 

1 

Let us make the substitution p ( t , x ) = e x p [ - ~ b ( t , x ) ]  in the nonlinear 
Fokker-Planck equation (2.1). The resulting nonlinear equation is 

- a,q~(t, x) = - [�89 x) + V - g ( x ) ]  + �89 x)] 2 

+ Eg(x) + J ( x ( t ) ) ]  .V~(t,  x) 

g(x) = ( ~ - j - x 2 ) x  + X ? 

(2.2a) 

(2.2b) 

The following stationary solution solves ~FAeb(t, x ) + V .  g (x )=  0: 

p,(x) = Z -1 exp[ - ~b(x)] 

~b(x) = ( J -  ~ + �89 

Z = f  exp[- - q~(x)] dx 

(2.3) 

The solution (2.3) also solves (2.2) with ( x ) =  0. It is a stationary state of 
type II, according to Jauslin's classification scheme (8) for the FPE. The 
change of variable p(t, x) = p,(x) + [ps(x)]  1/2 q(t, x) in (2.1) results in the 
following nonlinear equation for q(t, x): 

O,q(t, x) = Lq + J[�89 x) V~b(x) - Vq(t, x ) ] .  ( y [ p , ( y ) ]  1/2 q(t, y ) )  

(2.4a) 

Lq =- (Lu + LA) q(t, x) + J [p , (x ) ]  1/2 V~b(x)- (y[p.~(y)] 1/2 q(t, y) ) 

(2.4b) 

Laq(t, x) --- 1FAq(t, x) + �88 - �89 2 } q(t, x) 

LAq(t, x ) ~  --x t .Vq(t, x) 

( f ( y ) ,  g (y) )  -~ f f ( y  ) g(y) dy 

(2.4c) 

(2.4d) 

(2.4e) 
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The operators L~/and LA are Hermitian and anti-Hermitian, respectively. 
They also commute. Let us consider for a moment the linear FPE that 
results from setting ( x ( t ) )  - 0  in (2.1). Then L - L ~ + L A ,  [LH, LA] =0.  
As --L~/is positive, all the eigenvalues of L have negative real parts. They 
also have nonzero imaginary parts provided by the anti-Hermitian 
operator L A. Thus, q(t, x) relaxes oscillatorily to zero for any initial con- 
dition q(t, 0). Oscillations and decay to zero are independent of each other, 
which characterizes type II states. (8~ The H-theorem for the linear FPE 
(2.1) with ( x ( t ) ) - - 0  also implies that (2.3) is stable. ~9) Let us define 

H(p, Ps) = - f p(t, x) ln[p(t ,  x)/ps(x)] dx (2.5) 

The relative entropy H(p, p~) is a Liapunov functional for (2.1) with 
(x ( t ) ) - - -0  [H(p, ps)<O if P#Ps ,  H(ps, Ps) =0, and dH(p, ps)/dt>~O. 
Any initial p(0, x) will therefore relax roward ps(x) if (x ( t ) ) -=0 .  

In general ( x ( t ) ) # 0  and (2.3) may be unstable. The linear stability 
analysis of (2.3) may be done as in the case of the model (1.1). (5) The result 
in dimensionless form is given by the following equation: 

A = �89 2 1 - 0 -~ exp(-A2/O 2) exp( - r  2) dr (2.6a) 
A/O 

A -- a / J -  1 (2.6b) 

0 = (2F)'/2/J (2.6c) 

The regions of instability of (2.3) are shaded in Fig. 1. Equation (2.6) is 
obtained in the Appendix. For A at the critical line (2.6), there is either a 
sub- or a supercritical Hopf  bifurcation. ~~ Below the critical line, (2.3) is 
stable. Above (2.6), the following one-oscillator probability density is 
asymptotically stable (see below): 

po(t, x ) = Z 0  -1 exp[-~b(x)  + 2 J F  ix- ( x ( t ) )o ]  (2.7a) 

d (x( t ) )o /d t  = - (x( t )  t )o  (2.7b) 

Z o --- ~ exp[ - ~b(x) + 2JF ix" ( x ( t ) ) o ]  dx (2.7c) 
d 

Equation (2.7b) leaves the amplitude and phase of the oscillations of the 
mean value (x ( t ) )o  unspecified. The amplitude (x ( t ) )~  is implicitly given 
by the equation 

~5 In Zo/6(x(t) )o -= 2JF-1 (x ( t ) )o  (2.7d) 
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Here and in what follows, the subscript zero indicates that the averages are 
with respect to the oscillatory state (2.7). That (2.7a)-(2.7c) is a solution of 
(2.1) follows from direct substitution in (2.1). By taking a functional 
derivative of In Zo with respect to <x(t)>o, we find (2.7d). Exactly at the 
bifurcation line (2.6), the functional derivative of (2.7d) with respect to 
<x(t))o is singular: 

det[6 2 In Zo/3 <x(t))o 6 < x ( t ) ) o -  (2J/F) 1 ] = 0 (2.8) 

At the bifurcation line <x(t))o--0, the determinant in (2.8) is equal to 
[JF-l<x(t))o- 1] 2, and (2.8) also yields (2.6), as shown in the Appendix. 
Near the bifurcation line (2.6), we can find an approximation to the bifur- 
cating solution (2.7) by: (a) expanding Z o in powers of <x(t))o and solving 
(2.7d) iteratively; and (b) by adapting standard Hopf bifurcation 
calculations (1~ to the nonlinear FPE (2.1). We shall sketch both methods 
below, as both shed light on different aspects of the oscillator syn- 
chronization: method (a) emphasizes the "thermodynamics" of the non- 
equilibrium phase transition and its similarity with the Curie Weiss 

1 
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1 2 

0 

Fig. 1. Stability diagram for the stationary solution (2.3) as given exactly by Eq. (2.6) and 
approximately by the Gaussian truncation (GT). Region h ps(x) is unstable according to both 
(2.6) and GT. Region Ih ps(x) is stable according to both (2.6) and GT. Region IIh ps(x) is 
unstable, but GT yields the opposite result. Region IV: p,(x) is stable, but GT yields the 
opposite result. 
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model m) and the theory of Landau. (12) By using method (b), we build the 
bifurcating solution and find its stability at the same time. The result is 

po( t ,  x ) =  Z o  ~ exp{ -~b(x)+  [ 2 J F - l ( A ~ .  + 1 - ~01 2)/(02 _ A~. - 1)] 1/2 

x ( A  - A c ) ~ / 2 ( y  cos t -  x sin t)  + O ( f A  - A , . f ) }  (2.9) 

Here we have taken A (or c~ in dimensional form) as our bifurcation 
parameter. Ac is the value of A at the critical line (2.6). Let 0* be the point 
where the curve (2.6) intersects the parabola A + 1 = 0 2, as shown in Fig. 1. 
For 0 >  0* the oscillatory density (2.9) exists only if A > A,., and it is 
asymptotically stable except for constant phase shifts, as the Hopf theorem 
shows. (~~ For 0 < 0* the oscillatory density (2.9) exists only if A < A,., and 
it is then unstable. We have determined the bifurcation diagram near 
0 = 0* and near the minimum of the instability region in Fig. 1. Figure 2 
shows different sections of the amplitude of the oscillations versus A and 0. 
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Fig.  2. B i fu rca t ion  d i a g r a m s  for  R ~  [ ( x ( t ) ) 0 2 ]  1/2 versus  A a n d  0. 
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The point on the bifurcation line with 0 = 0* separates a region where there 
is a second-order phase transition (for A >/Ac) to the oscillatory state from 
a region where the phase transition is first order. 

2.1. Thermodynamic  Method .  Role of the Entropy 

Let us derive (2.9) by method (a). It is not hard to see that Z 0 depends 
only on the amplitude of the mean value (2.7b), and thus it is time- 
independent. We just write the integral in (2.7c) in polar coordinates and 
use the integral representation of the modified Bessel function Io(x)3 TM The 
result is 

Zo = Z<Io(2JF l[ (X(t) >2X2]'/2) > s (2.10) 

Here the subscript "s" means that we average with respect to the stationary 
probability density (2.3). Physically, we may interpret - F l n  Zo as the 
nonequilibrium free energy of the state (2.7). By expanding the Bessel 
function in powers of its argument, we obtain a polynomial approximation 
of the free energy similar to Landau's free energy. ~ As the phase of the 
oscillations has disappeared from (2.10), we can simplify our formulas by 
reparametrizing the free energy, thereby eliminating one parameter: 

y =x(J /F)  1/2, <y(t)>0 = (J/F)l/2<x(t)>o (2.11) 

With this dimensionless variable, the partition function in the stationary 
state (2.3) becomes 

Z =  | exp{(JA 1 2 2 -~x )x/F}dx 
3 

{, 
= (F/J) J exp[(A - �88 2] dy 

- ( F / J )  

We now define the dimensionless free energy as - l n  ~o, where 

(2.12) 

(, 
~o = J expE(A - �88 2) y2]/o(2 E (y(t)  >g y2] ~/2 dy 

= ~ (I0(2E <y(t) >2 y2] 1/2) >s (2.13) 

Notice that we have one less parameter than in (2.10). Direct 
reparametrization of (2.t) does not change the number of independent 
parameters, it merely alters their placement in the equation. In fact, (2.1) is 
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dimensionless: we have fixed the time scale by imposing the frequency of 
the oscillations to be unity. The self-consistency condition (2.7d) now 
becomes 

i.e., 

(Y(t))o = 6 In ~o/6(y(t)) o 

( y ( t ) ) o =  { y ( t ) ) o { { y 2 ) s + � 8 9  o 2  2 

+ E((y2)3) ,+  12(y2)2 

_ 9(y2 ) ,< (y2)2)s] [ <y(t) )g] 2/12 

+ O([{y(t))o213)} (2.14) 

Equation (2.14) is obtained by expanding the free energy (2.13) in powers 
of the amplitude of the oscillations, {y(t))~. Equation (2.14) is different 
from Landau's theory, where the equilibrium value of the order parameter 
minimizes the free energy. (12) As a consequence, we will see that the 
entropy is a bad measure of the "disorder" in our problem. It turns out 
that the entropy in the ordered phase, where { y ( t ) ) o # 0 ,  can be either 
smaller or larger than the entropy in the disordered phase, (2.3), where 
( y ) , = 0 .  

To find the amplitude of the oscillations, we now expand the coef- 
ficients of the series in (2.14) in powers of ( A -  A,), where A c is the value of 
A at the bifurcation line (2.6). The result is 

(y( t ) )o  = ( y ( t ) ) 0 { l + [ 2 0  2 ( A , . + I ) - I ] ( A - A , . )  

+ [0 2(1 + A , . ) -  1]((y( t ) )o} + --. (2.15) 

We have kept the leading order terms in (A - A c )  and ignored higher order 
terms in the mean value of y, which is legitimate when 1 + Ac - 02 :r 0. The 
nonzero solution of (2.15) yields (2.9). Similarly, we can use 0 as our bifur- 
cation parameter. We find 

(y( t ) )o  = (Y(t))o{ 1 + [ A c -  1 - 2A~.(Ac + 1)/022(0- 0c)/0c 

+ [0c2(1 +A~. ) -  1 ] (y ( t ) )o  2} + ... (2.16) 

When 0 = 0", 1 + Ac. - 02 is zero, and we have to retain higher order terms 
in (2.14). At the minimum of the curve (2.6), 0~.= Ore, the coefficient of 
(0--0c) in (2.16) is zero, and we also run into trouble. As 0* and Om are 
quite close to each other, we expect that an analysis of (2.14) in the 
neighborhood of 0,~ will tell us what happens in the neighborhood of 0* as 
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well. Let us retain all the terms displayed in (2.14) and expand their coef- 
ficients in powers of ( A -  A,,) and of ( 0 -  0~). By imposing that 

R 4 _  ( ( y ( t ) ) ~ ) 2 ~  ( A - A m )  ~ ( 0 -  Ore) 2 

in the resulting equation, we find the following dominant balance: 

R 4 + 3{ [--�89 + A,~) + (1 -- Am)(O - 0m)/0m] R 2 

- (A-Am)+�89  ' = 0  (2.17) 

We have kept the term (1-Am)(O-O,,)Ra/Om in (2.17) because of the 
smallness of (1 + Am). By equating the coefficient of R 2 to zero, we get an 
approximate 0* that differs from the exact one by terms of order (1 + Am) 2. 
The solutions of (2.17) for different values of A and 0 allow us to build 
Fig. 2, where "s" means stable and "u" means unstable, with the obvious 
meanings for both the stationary and oscillatory solutions. The stability 
assignements have been made according to the principle of exchange of 
stability in the Hopf bifurcation. r176 See below for a different criterion. A 
complete classification and unfoldings of degenerate Hopf bifurcations have 
been established (for codimension ~< 3) by Golubitsky and Langford. r 

Let us now calculate the entropy difference between the oscillatory and 
the stationary states for equal values of the parameters. By using (Z3), 
(2.7), and (2.10), together with the dimensionless variables and free 
energies (2.11 )-(2.13 ), we obtain: 

A S - S o - S , -  _ ! [  2 (y2>o-- ( y a ) , ]  _ ( y ) g + l n ( i o ( 2 ( ( y ) g y 2 ) l / 2 ) ) ,  

(2.1g) 

By expanding the terms in (2.18) in powers in (y )~ ,  we get the following 
approximate expression: 

A S = ( y ) 2 [ - 1 - A / O R + ( 1 - A Z O  2 + �89 (y2).,] + O[((y)o)21 (2.19) 

Near the bifurcation line (2.6) we can use (2.9) and expand (2.19) in 
powers of (A --Ac). The result is 

AS= - �89 0-2(0 2 -  1 --Ac) 1 + O(]A --A,[ 3/2) 

(2.20) 

For 0 > 0* and (A, 0) near (2.6) the entropy of the (stable) oscillatory 
state is larger than that of the (unstable) stationary state if A < 0. The 
opposite holds true if A > 0: the entropy is larger at the stationary state. 
We see that the entropy is neither a measure of the disorder nor a sign of 
stability. A similar calculation shows that the free energy is not a ther- 
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modynamic potential, as l n ( Z / Z o )  can be positive or negative. For 0 < 0* 
the stable oscillatory state has a nonzero order parameter ( y ) o  2 even at the 
bifurcation line (2.6). We have a first-order phase transition with a positive 
"latent heat" given by F times A S ,  

A S ~ _ ( I + A , _ 1  2 2 2 ~O ~.)(As ~.)Rc 
i 2 2 Am)I-l[�89 + A m )  = - 3A~.(1 + A c - ~ O , ) [ O c ( 2 +  

- (1 - Am)(OSO m - l ) ]  (2.21) 

(2.21) is obtained by noticing that the independent term in (2.17) vanishes 
at the bifurcation line (2.6). At the bifurcation line we can thus compute 
the amplitude from (2.17) and substitute in (2.19), thereby getting (2.21). 

2.2. Evo lu t ion  t o w a r d  t h e  O s c i l l a t o r y  S t a t e  

Let us use A as our bifurcation parameter. From Fig. 1 we see that for 
A < A,. the stationary density is stable, while it is unstable if A > A c (for 
0 >~ 0). We shall build the bifurcating time-periodic density by means of the 
two-time method of Kogelman and Keller. (15) Use of this small-amplitude 
method in (2.1) yields a vertical bifurcation to all orders in the expansion. 
In physical terms, nonlinear response theory fails to all orders. Thus, we 
apply the method to Eq. (2.2) for ~b(t, x ) = - l n  p(t ,  x). Let us define a 
small parameter e to measure the distance to the bifurcation point A,.: 

A = A c + ~A 1 + e2A2 + 0(~ 3) (2.22) 

For A near its critical value, we try an expansion of the following form for 
,/,(t, x): 

~(t, x ) =  in Z +  ~b(x)+ e~Ul(s, v, x) + e2gt2(s, r, x ) +  e3~3(s, r ,  x )  -~- O ( e  4) 

(2.23) 

Here the order-zero term is (2.3), and we have introduced two independent 
time scales s = t and r = ( A - A c ) t .  These separated scales measure, respec- 
tively, the oscillations of frequency 1 and the slow evolution of the 
amplitude of these oscillations toward their final value. We now insert 
(2.22) and (2.23) in (2.2), together with 0, = ~?, + (A - A c ) ~ .  A hierarchy of 
linear equations results: 

Mgtl ~ [ps(X)] --1/2(~ s - -  L,.){ [ ps.(x)] 1/2 II/1 } = 0 (2.24a) 

M~U2 --- A 1('" ") 7t~ - �89 ~u~ )2 _ �89 V~b. (x, p~(x) ~ )  

+ JVTt~ �9 (x, p~(x) ~ ) (2.24b) 
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= - A2[~ , -  J x - V  + 2 j2F- lx  �9 (xps(x), �9 ) 

-J2F-IV~b. (x(x 2 -  F/J) ps(x),. ) ]  ~ + A ~(..-) 

-FV~e~ .V~U~-JV~. (x, p,(x) ~u~ ~e~) 

+ JV~2.  (x, ps(x) ~, ) + J V ~ .  (x, p /x)  ~2) 

+ JV~b. (x, p,(x) ~u~ )/6 - �89 V~u, - (x, qj2 ) 

In addition, we have the following normalization conditions: 

(pXx), ~", ) = o 

(p~(x), ~e2) =!(p,(x) ,  ~ )  2 

The solution of (2.24a) and (2.25a) is 

~l(s, r, x) = (ix + y) e'~a(r) + c.c. 

(2.24c) 

(2.25a) 

(2.25b) 

(2.25c) 

(2.26) 

We need to find an evolution equation for a(r), so as to determine the 
leading order approximation to the bifurcating solution. This we do by 
solving successively the remaining equations in (2.24) and (2.25). For the 
inhomogeneous equation (2.24b) to be solvable, its right side must be 
orthogonal to the solution of the adjoint equation to (2.24a). This 
Fredholm alternative condition yields A l =  0. Anticipating this result, we 
did not explicitly write the terms multiplying At in (2.24). The solution of 
(2.24b) and (2.25b) is 

~Uz(S, % x ) =  F J-" ]a('~)l 2 

Insertion of this and of (2.26) in (2.24c) plus the Fredholm alternative yield 
the following equation for a(Q: 

da(Q/d,=vJ[(A~,+ l-�89 JA2+�89 l-O2)la(z)j2]a(z ) (2.27) 

v=�89 [p,(x)]l/2(i, 1 ) . V ~ l )  (2.28) 

The function @ in (2.28) solves the adjoint equation L*~9 = iO. The trouble 
with (2.27) is that we have not been able to solve the adjoint equation, and 
thus we ignore the explicit form of v. The term v is proportional to the 
derivative with respect to A (at A~.) of the eigenvalue that crosses the 
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imaginary axis at the critical line. From Fig. 1 we infer v > 0 for the part of 
the critical line with 0 >~ 0. For the region of Fig. 1 where 0 >/0 and the 
stationary solution is unstable, the sign of the coefficient of a(z) in the right 
side of (2.27) is positive, and it is negative just below the critical line. The 
sign of the coefficient of the cubic term is always negative near the critical 
line. Then, any initial condition of (2.27) tends toward a = 0 for A2 < 0 
(A < Ac), and it tends toward 

a(ov ) = [2JF-1A2(Ac + 1 - �89 - Ac - 1)] 1/2 

otherwise. This ends the derivation of (2.9), and proves the claims about 
the asymptotic stability of the bifurcating time-periodic density. We will 
not consider here how to extend the two-time method to the degenerate 
case (2.17). It is not hard to do it knowing the result beforehand: instead of 
zero, we should get a right side proportional to R 1 dR/dr in (2.17). From 
this time-dependent equation we can show the validity of the principle of 
exchange of stability used to draw Fig. 2. 

As indicated by (2.10), the "thermodynamics" of our state (2.7) (given 
by ln Z0) depends only on <x(t))02, and therefore is independent of the 
time. The "kinetic theory," however, might not register a monotone trend 
of the entropy toward its value in the state (2.7). The time derivative of the 
relative entropy H(p, Po) defined by (2.5) is 

dH(p, po)/dt = �89 p(t, x){V ln[p(t ,  x)/po(t, x)] }2 dx 

- J ( < x ( t ) >  - < x ( t )  >o)  

x f p(t ,x) V{ln[p(t,x)/po(t,x) ] dx (2.29) 

Because of the second term in the right side of (2.29), dH(p, po)/dt might 
change signs during the rise of the relative entropy to zero, and thus 
H(p, Po) would not be a Liapunov function. As we saw before, the absolute 
entropy is not a good indicator of stability (thermodynamic potential) 
either for our nonlinear FPE. The question of what is the Liapunov 
function for our equation remains unanswered. 

It is not clear whether the features of the model (1.3) so far described 
are general for the class of mean-field models considered here and in Ref. 7. 
In fact, we can perform so many explicit calculations only because both the 
rotation and the mean-field coupling terms are linear. Relaxation of any of 
these assumptions complicates even the linear stability analysis (2.4). 
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3. N U M E R I C A L  R E S U L T S  

We describe here the relaxation toward the stationary or time-periodic 
probability densities from a given initial condition. It is not possible to do 
so analytically. We thus resort to numerical methods. Following previous 
work, (3'6) we use a cumulant expansion to describe the relaxation to the 
stable state. The cumulant-generating function W(t, ~) is defined by 

e x p [ W ( t , { ) ] = f e x p [ { . x ] p ( t , x ) d x ,  {-= (~, t/) (3.1) 

The (one-time) cumulants are the coefficients of the expansion of W(t, ~) in 
powers of {. From (3.1) and the nonlinear FPE (2.1), we find the following 
evolution equation for W(t, {): 

c3, W(I, ~) = �89 2 + J{.  ( x ( t ) )  + ~. ((o~ - J) VW(t, ~) 

- w  w(t, ~ ) -vw( t ,  ~){~J w(t, ~)+ [vw(t, ~)3 2} 

- VW(t, ~) .V VW(t, { ) )+  {* .VW(t, ~) (3.2) 

Let us expand W(t, ~) in powers of { and equate both sides of (3.2) term 
by term. The result is a hierarchy of coupled evolution equations for the 
cumulants. In the equations for each cumulant we find cumulants of higher 
order. Thus, to solve the hierarchy is not an easier task than solving (2.1) 
or (3.1). In practice, we will close this hierarchy by demanding that all 
cumulants of order higher than two be zero. This closure assumption is the 
Gaussian truncation (GT), a "dishonest" perturbation method, (16) which 
does not correspond to any expansion in a small parameter. In spite of its 
character, the GT works pretty well in a wide region of the parameter 
space, as we report below. More complete discussions of this and related 
approximations can be found in Refs. 3, 5, and 6. 

The evolution equations for the first-order [e I = (x( t)) ,  c2 = ( y ( t ) ) ]  
and second-order [cll = (x(t) 2) - (x ( t ) )  2, 1222 = (Y(t) 2) -- (Y(t ) )  2, 
C~2 = (x(t) y(t) ) -  (x(t) ) ( y ( t )  ) ] cumulants are 

dcl /d t=cl[e-(c~ +c2) -3c l~ -c22] -c2 ( l  + 2c12) (3.3a) 

dc2/dt=ca[o;-(c~ +c2)-3c2a-c11]+cl(1-2c12)  (3.3b) 

1 d C l l / d  t = el 1(0~ _ j _  3 c 2  _ c 2 _ c 2 2 )  

- 3c21 - c12(1 + 2clc2 + 2c12) + �89 (3.3c) 
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�89 dc2Sdt = c22(c~ - J -  3c~ - c~ - c11 ) 

- 3c222 + C12(1 - -2Cl  C2 -- 2c12) + �89 (3.3d) 

�89 dc12/dt = c12E~ - J -  3(Cll + c22) - 2(c~ + c~)] 

-~- I ( C l l  - -  C22 ) - -  C 1 C2(C[1 -~- C22 ) (3.3e) 

The bifurcation line may be computed from (3.3). The result is 0 2 = A + 1. 
In Fig. 1 we have compared this curve with the exact bifurcation line, 
Eq. (2.6). This comparison gives an indication of the region where the GT 
(3.3) approximates the true cumulants: We expect the GT to work far from 
the A axis, in regions I and II of Fig. 1, where both the exact formula (2.6) 
and the truncation assign stability to the same solution (stationary or 
oscillatory). 

We have solved (3.3) by a fourth-order Runge-Kutta algorithm 
together with predictor-corrector formulas. The results are depicted in Figs. 
3 and 4. After a transient regime (whose duration increases when we 
approach the critical line: the critical slowing down), the system settles 
down to the stable solution, oscillatory (Figs. 3a and 3b) or stationary 
(Fig. 3c). 

The frequency of the oscillations of the time-periodic solution is one 
for the first cumulants and two for the second ones. It is independent of the 
parameters A and 0, as indicated by the exact solution (2.7). The amplitude 
of the oscillations depends on the values of A and 0. This can be seen in 
Fig. 4, where we plot them against A for fixed 0. Notice that Fig. 4 is the 
typical diagram for a second-order phase transition. 

We have also analyzed the information entropy S = - S p ( t , x )  
in p(t, x) dx in the Gaussian approximation. The result is 

SG= 1 + In(2rctc] l/a), where C=C11C22--C212 (3.4) 

With the numerical solution of (3.3), we can easily evaluate this entropy. 
The results for different situations are plotted in Fig. 5. We have displayed 
the evolution of S~ for the parameter values corresponding to three of the 
points marked in Fig. 1: The dot and the triangle are in region I, where the 
oscillatory solution is stable and the stationary one is unstable. The star in 
Fig. 1 is in region II, where the stationary solution is stable and there is no 
oscillatory solution. Similar results are obtained for different initial con- 
ditions, including the case of a delta-function initial probability (c = 0). 

SG presents a nonmonotone behavior in its evolution toward its value 
in the corresponding stable state. This result is surely spurious, an artifact 
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Fig. 3. (a) Time evolution of ( - - )  Cl(t), ( - - )  ct2(t), (..-) Clt(/), in the Gaussian 
approximation. The aparameter values 0 = A = 0.5, F =  0.02 (dot in Fig. 1) correspond to a 
stable oscillatory state. The initial conditions are q (0 )=0 .51 ,  Cz(0 ) =0.24, c11(0 ) = el2(0)= 
c~2(0) =0.  (b) Time evolution of q(t) for 0=0.5,  A = -0.72 (open circle in Fig. 1), F=0.02,  
and the same initial conditions as in part (a). Notice the break in the time axis. 
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4 8 12 16 50 54 58 

Fig. 3 (continued) (c) Time evolution of q(t) and of c]l(t) for 0=0 .5 ,  A = --1, F = 0 . 0 2  
(star in Fig. 1), and the same initial conditions as in part (a). Notice the break in the time 
axis. 

due to the Gaussian truncation. In fact, the n o n m o n o t o n e  behavior is more 
noticeable the farther the initial condition is from the stable state. But for 
such initial conditions non-Gaussian behavior is expected. (6) When we 
choose initial conditions closer to the oscillatory state, the entropy tends 
monotonical ly  to its final value. This is also the case as we approach the 

r,F 0.5 

0 I - .  

-I 0 I 2 

A 

Plot of the amplitude of the oscillations R=[cl(t)Z+c2(t)2] ~/2 versus A in the 
Gaussian approximation for fixed 0 = 0.5, F =  0.02. 

822/'48/3-4-15 
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Fig. 5. Plot of the time evolution of S~ for F= 0.02, 0 = 0.5, and three different values of A 
in the oscillatory state: ( - )  A =0.5 (dot in Fig. 1); (.-.) A = -0.4 (triangle in Fig. t); ( - - )  
A = -1 (star in Fig. 1). For each value of A, we have calculated the information entropy with 
the exact p~(x) of Eq. (2.3). The results are the lines $1, $2, $3, which correspond to A =0.5, 
-0.4, and -1, respectively. The initial conditions are as follows: c1(0)=0.51, c~(0)=0.24, 
QI(0) = cz2(0)= 0.1, Q2(0)= 0.001. Notice the break in the entropy axis. 

critical line from above. We have chosen to approach  the critical line in the 
region where the Gaussian line of Fig. 1 is tangent  to the exact (dashed) 
line in Fig. 1. In this way we make sure that  the Gaussian t runcat ion does 
not falsify the results. In  Fig. 5 we have also plotted the entropy of the 
stationary state. We observe that it is smaller than the entropy of  the stable 
oscillatory state for 0 and A corresponding to the points marked by the dot  
and by triangle in Fig. 1. This is not  the case for the values corresponding 
to the circle. This can be unders tood by means of  Eq. (2.20), as 02 < A c + 1, 
A > Ac, and Ac < 0. For  values of 0 and A corresponding to the star in 
Fig. l, the entropy tends toward its value at the stable s tat ionary state. 
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4. S U M M A R Y  

We have analyzed a simple model of self-synchronization of large 
populations of nonlinear oscillators. Each oscillator is in contact with a 
thermal bath at temperature F and interacts linearly with the mean field of 
all the others. The oscillators feel no external influence besides the bath's. 
In the thermodynamic limit we have described the nonequilibrium phase 
transitions from a stationary to a time-periodic probability density. We 
have found first- and second-order phase transitions according to the 
values of the parameters. Furthermore, the information entropy is constant 
in each stable state (stationary or time-periodic probability density, 
according to the values of the parameters). We can define, even in the 
oscillatory state, constant free and internal energies following the usual 
rules of equilibrium statistical mechanics. However, they are not ther- 
modynamic potentials in the usual sense, as they do not indicate which 
state is stable. Furthermore, fully to describe the system, one really needs 
the one-oscillator probability density: The Einstein relation between 
entropy and probability density does not hold in the oscillatory state. 

A P P E N D I X .  S T A B I L I T Y  A N A L Y S I S  O F p s ( x )  

Our analysis follows that by Dawson. t5) To the equation (2.4a) for a 
disturbance about the stationary state p~(x) we associate the eigenvalue 
problem 

2w(x) = Lw(x) (A.1) 

Equation (A.I) is obtained by inserting q(t, x)=  e;"w(x) in the linearization 
of (2.4a) about q = 0. Consider the linear operator M =  - L , v - L A .  As the 
operators L,v and L A commute, they have the same eigenfunctions. The 
eigenvalues of L,~ and L A are, respectively, the real and imaginary parts of 
the eigenvalues of M. The term [ps(x)] 1/2 is the ground state of M and its 
corresponding eigenvalue is zero. All other eigenvalues have positive real 
parts. Let us call 2j(M) the j th  eigenvalue of the operator M. The eigen- 
values of positive operators are ordered by their magnitudes, starting from 
the corresponding to the ground state. We want to compare Jr(M) and 
Re 2j(L). Let ~ be the three-dimensional Hilbert subspace of L2([~ 2) 
which is spanned by [ps(x)] 1/2 and by n-X[ps(X)] 1/2 for any n e N2. Let 
~ be the orthogonal subspace to ~f,~. Let H be the projector onto ~g~-. 
Then, 

(,X, HLHK2) = - ( Z ,  MQ),  E, Q c at/~ - (a.2) 



590 Bonilla, Casado, and Morillo 

The scalar product ( , )  was defined in (2.4e). Equation (A.2) implies that 

0 < 2 1 ( - L . ) = i n f {  - (/~, LH#): J]/~]l = 1, I,~EL2([~2), ( [ p s ( X ) ]  1/2, ]J) = 0 }  

~< inf{ - (/~, L.#) :  I1~]1 = 1, ~ ~ L2(~2), ( [p~(x)] 1/2, #) 

= (n -  x [ps (x ) ]  1/2, ~ )  = 0} 

= - R e  21( / /L/ / )  

Thus, all the real parts of the eigenvalues of HLH are negative. There is 
then only one possibility of getting [-p,(x)] 1/2 to be unstable: finding eigen- 
values of L that are not orthogonal to n'x[ps(x)] ~/2 and correspond to 
eigenvalues of positive real parts. Let us try w(x, n ) -  n.  x [p , (x) ]  1/2 itself 
in Eq. (A.1). We get 

2n.  x = �89 2, ps(x)) - F)n -V~b - x +. n (A.3) 

Let us consider now the function w(x, (0, 1))+iw(x, (1, 0))-s  By 
repeating the procedure that led to (A.3), we obtain 

( 2 -  1) ~2(x) = - (JLx 2, ps(X))-F)(iO,.+O>.) [p~(x)~ ~/2 (A.4) 

s is an eigenfunction of L with eigenvalue i for those values of the 
parameters ~, J, and F that make the right side of (A.4) equal to zero. Then 
s corresponds to the eigenvalue - i .  There is a Hopf bifurcation at 
those values of the parameters that make zero the right side of (A.4). The 
critical line at which the probability density bifurcates is given by 

f xZps(x) dx = F/J (A.5) 

After some algebra, we can derive (2.6) from this equation. 
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